

Oficina de Robótica

Programação Básica em Arduino - Aula 8

Serial

Receber um valor da porta Serial. Os comandos que serão utilizados em aula serão Serial.available() e Serial.parseInt().

- VALE
- Serial.available() indica os dados que estão disponíveis para leitura.
- parseInt(): retorna um valor inteiro que deseja-se ler da serial.

Serial

```
Ex:
      int x=0;
      void loop ()
        while (!Serial.available());
          = Serial parseInt();
        switch(x)
```

Financiamento:

Execução:

Exercício

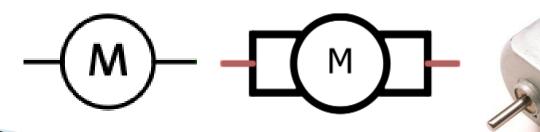
 Criar um programa que acenda um LED quando enviado 1 e apague quando enviado 0.

Execução:

Exercício

```
void setup()
  pinMode(13, OUTPUT);
  Serial.begin(9600);
  Serial.println("Digite o estado do LED:
int x=0;
void loop ()
  while(!Serial.available());
  x = Serial.parseInt();
  if (x == 1)
    digitalWrite(13, HIGH);
  else
    digitalWrite(13, LOW);
```

Financiamento:


Execução:



- Transforma energia elétrica em energia mecânica.
- O sentido de giro do rotor depende do sentido da corrente que percorre as bobinas do motor.
- Invertendo-se os polos da fonte de alimentação, inverte-se o sentido de giro do rotor.

- Partes de um motor DC:
 - Rotor: Parte móvel do motor. Gira quando o motor é alimentado.
- VALE

Financiamento:

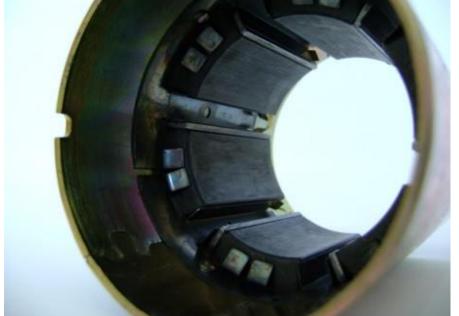
- <u>Estator</u>: Parte estática do motor. É montado ao redor do rotor.
- <u>Escovas</u>: Conectam os terminais ao comutador.
- Comutador: Conecta o rotor à alimentação e faz a inversão do sentido da corrente, necessária para o correto funcionamento do motor.

 Rotor: Parte móvel do motor. Possui bobinas que geram um campo magnético quando o motor é alimentado.

 Rotor: Parte móvel do motor. Possui bobinas que geram um campo magnético quando o motor é alimentado.

<u>Estator</u>: Parte estática do motor. É montado ao redor do rotor. Composto de ímãs permanentes ou bobinas.

Estator: Parte estática do motor. É montado ao redor do rotor. Composto de ímãs permanentes ou bobinas.



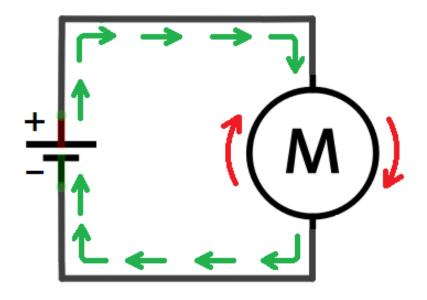
Escovas: Conectam os terminais ao comutador.

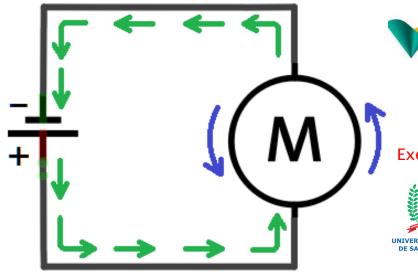
Financiamento:

Escovas: Conectam os terminais ao comutador.

Escovas: Conectam os terminais ao comutador.

Comutador: Conecta o rotor à alimentação e faz a inversão do sentido da corrente, necessária para o correto funcionamento do motor.



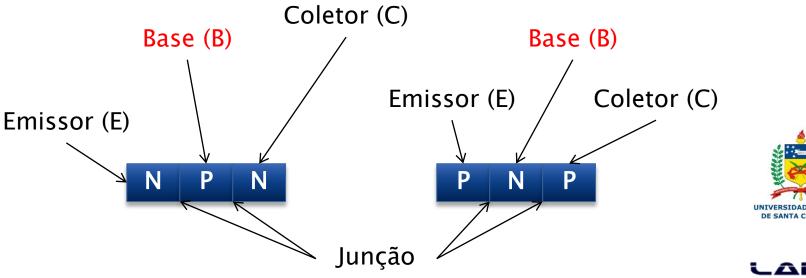


Inversão do sentido de giro:

- Os transistores (TRANSfer resISTOR) foram criados por Bardeen, Brattain e Schockley, nos EUA em 1947, quando trabalhavam na Bell Telephone.
- Um transistor é um componente eletrônico formado por três materiais semicondutores.

- O princípio básico de funcionamento dos transistores é o uso de uma tensão entre dois terminais para controlar o fluxo de corrente no terceiro terminal.
- Os transistores podem ser usados como chave, amplificadores de sinais e amplificadores de corrente.
- Podem ser ligados em cascata para aumentar o ganho de corrente.

- Os terminais de um transistor são:
 - Base (B): comum aos outros dois terminais.
 Quando está energizada a corrente flui do emissor para o coletor.
 - Coletor (C): responsável por receber os portadores de carga. É a onde entra a corrente a ser controlada.
 - Emissor (E): responsável por emitir portadores de carga. Saída da corrente que foi controlada pelo coletor.
- Um transistor se assemelha a dois diodos, um a esquerda e outro a direita.



- Os transistores podem ser de:
 - Baixa potência: trabalham com correntes menores.
 - Média potência: maiores que os de baixa potência. Normalmente são acoplados a dissipadores de calor. Trabalham com correntes maiores que os de baixa potência.
 - Alta potência: são maiores que os de média potência e já incluem em sua estrutura um dissipador de calor. Trabalham com altas correntes.

- Transistor Bipolar
 - Os transistores bipolares podem ser do tipo NPN ou PNP.

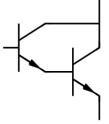
- Os transistores que serão utilizados no curso serão:
- ▶ PNP : BC558C
- ▶ NPN: BC546 BC550

- Transistor Bipolar
 - Polarização de um transistor bipolar
 - Emissor comum
 - Coletor comum
 - Base comum

- Identificação dos Transistores Bipolares
 - Nomenclatura Norte Americana
 - Exemplo:
 - 2N2222
 - O primeiro número, 2, indica o número de junções do componente.
 - A letra N indica que o material de fabricação do transistor é silício.
 - Os demais algarismos, 2222, indicam a sequência alfanumérica da série.

- Identificação dos Transistores Bipolares
 - Nomenclatura Europeia
 - Exemplo:
 - BC548
 - Primeira letra indica o material do transistor:
 - A Germânio
 - B Silício
 - Segunda letra indica a aplicação:
 - C uso geral ou áudio
 - D transistor de potência
 - F transistor para aplicações de rádio frequência
 - A sequência de número identifica o componente.

- Identificação dos Transistores Bipolares
 - Nomenclatura Japonesa
 - Exemplo:
 - 2SC1815
 - O primeiro número e a primeira letra indicam:
 - 1S diodo
 - 2S transistor
 - A segunda letra indica o tipo:
 - A ou B PNP
 - C ou D NPN



- Transistor Darlington
 - Combina dois transistores do tipo bipolar em um único encapsulamento.
 - A vantagem de um transistor darlington é o grande ganho de corrente, uma vez que a corrente é o produto do ganhos dos transistores individuais.
 - É considerado um transistor de uso geral e é muito empregado na amplificação de áudio.

- Tabela com alguns Transistores de Potência
 - Série BD NPN

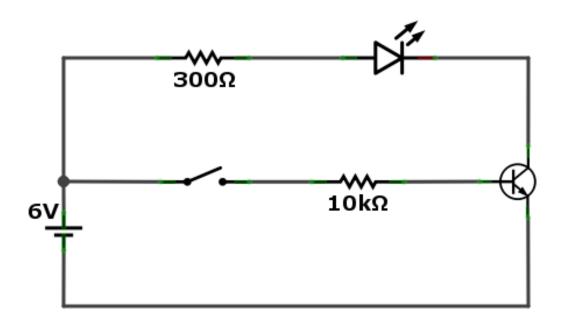
Código	Vce (V)	Ic (max) A	h _{FE}	Pd (W)
BD135	45	1,5	40 - 250	8
BD137	60	1,5	40 - 250	8
BD139	80	1,5	40 - 250	8
BD233	45	2	40 - 250	25
BD235	60	2	40 - 250	25
BD237	80	2	40 - 250	25
BD437	45	4	85 - 475	36

- Tabela com alguns Transistores de Potência
 - Série BD PNP

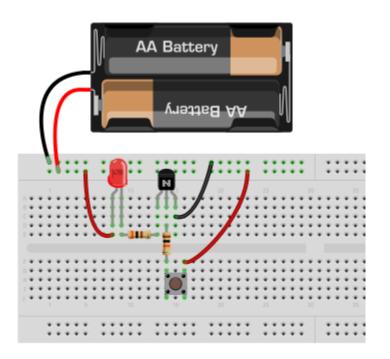
Código	Vce (V)	Ic (max) A	h _{FE}	Pd (W)
BD136	45	1,5	40 - 250	8
BD138	60	1,5	40 - 250	8
BD140	80	1,5	40 - 250	8
BD234	45	2	40 - 250	25
BD236	60	2	40 - 250	25
BD238	80	2	40 - 250	25
BD438	45	4	85 - 475	36

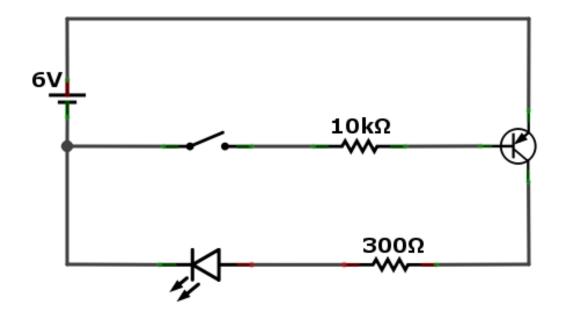
- Tabela com alguns Transistores de Potência
 - Série TIP- Darlington NPN

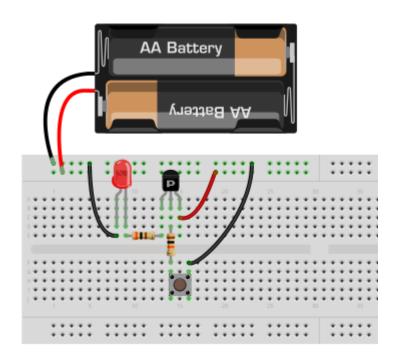
Código	Vce (V)	Ic (max) A	h _{FE}	Pd (W)
TIP110	60	2	500	50
TIP120	60	5	1000	65
TIP121	80	5	1000	65
TIP122	100	5	1000	65
TIP140	60	10	1000	125
TIP141	80	10	1000	125
TIP142	100	10	1000	125


- Tabela com alguns Transistores de Potência
 - Série TIP- Darlington PNP

Código	Vce (V)	Ic (max) A	h _{FE}	Pd (W)
TIP115	60	2	500	50
TIP125	60	5	1000	65
TIP126	80	5	1000	65
TIP127	100	5	1000	65
TIP145	60	10	1000	125
TIP146	80	10	1000	125
TIP147	100	10	1000	125


- Exemplo
 - Uso do transistor bipolar NPN


- Exemplo
 - Uso do transistor bipolar NPN

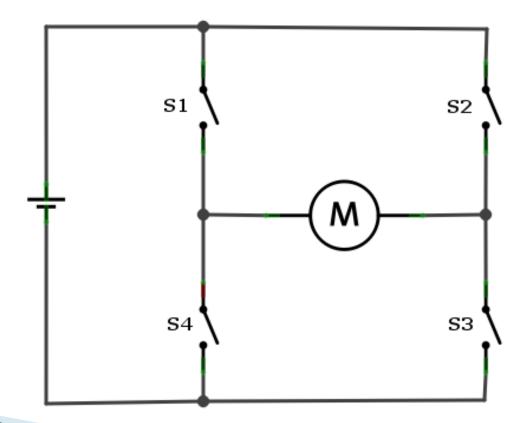

- Exemplo
 - Uso do transistor bipolar PNP

- Exemplo
 - Uso do transistor bipolar PNP

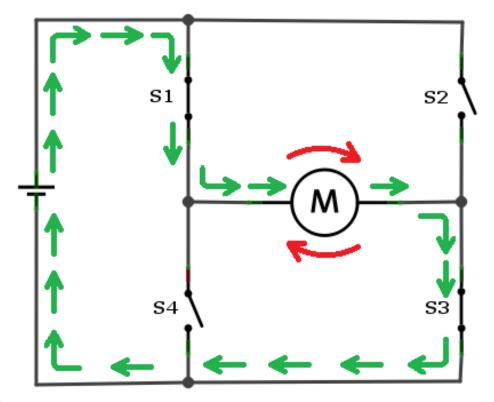
Exercício

Altere o exercício anterior, colocando a base em uma porta de saída do Arduino e colocar o botão em uma porta de entrada com PULLUP. Controlar a saída na base do transistor de acordo com o clique do botão. Com o botão pressionado o LED deve acender, com o botão não pressionado deve se manter apagado.

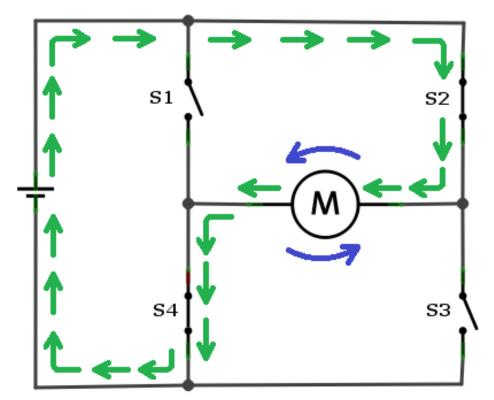
Código:

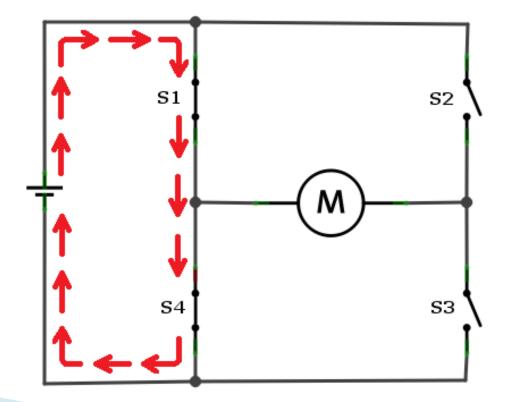

```
void setup()
  pinMode(13, INPUT_PULLUP);
  pinMode(8, OUTPUT);
void loop ()
  if (!digitalRead(13))
    digitalWrite(8, LOW);
    while(!digitalRead(13));
  else
    digitalWrite(8, HIGH);
```

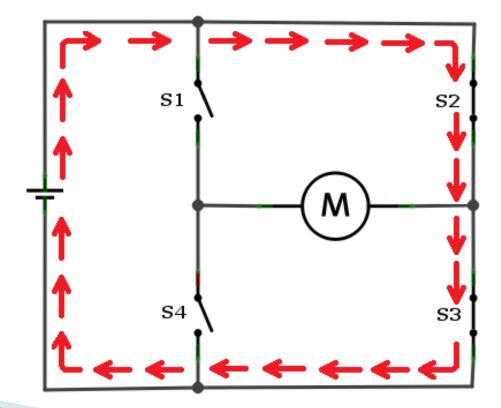
Exercício

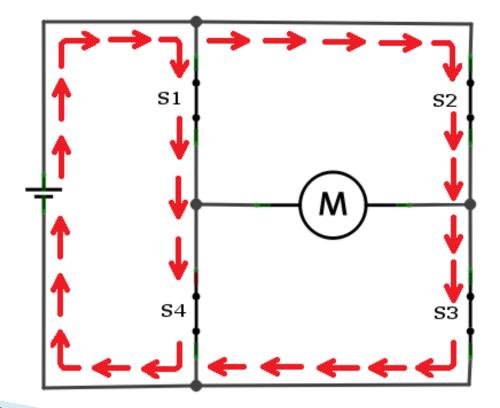

Substitua a fonte de energia do coletor, colocando o conjunto de pilhas no lugar da porta de 5V. Substitua o circuito do LED e posicione o motor DC.

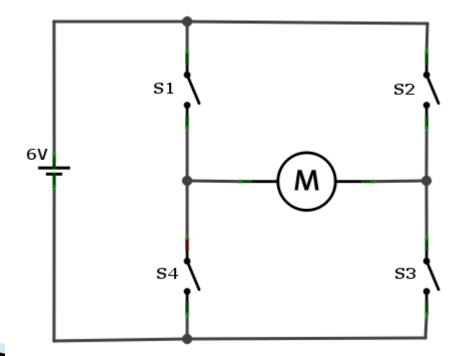
- A Ponte H é um circuito que permite a inversão do sentido de giro de um motor DC através da comutação de chaves eletrônicas.
- Pode ser implementada com chaves de contato, como push-buttons, ou transistores, que permitem o acionamento e inversão do sentido de giro de um motor através de sinais elétricos, sem a intervenção humana.


Todas as chaves abertas - Motor parado.

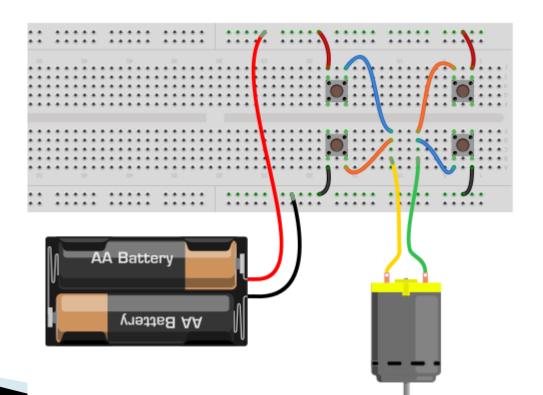

▶ S1-S3 fechadas e S2-S4 abertas - Rotor gira em um sentido.

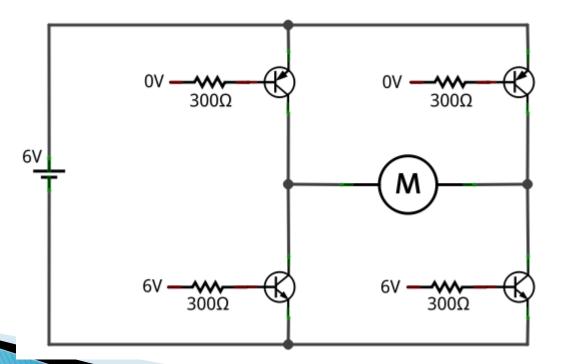

▶ S2-S4 fechadas e S1-S3 abertas - Rotor gira no sentido oposto ao anterior.

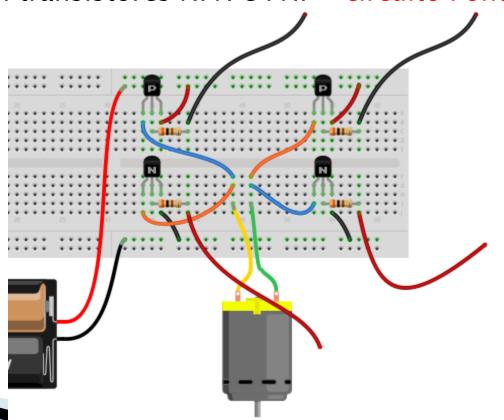

\$1-\$4 fechadas - Essa configuração não deve ocorrer. *** CURTO CIRCUITO ***


 S2-S3 fechadas - Também não deve ocorrer. *** CURTO CIRCUITO ***

Todas as chaves fechadas – Também não deve ocorrer. *** CURTO CIRCUITO ***

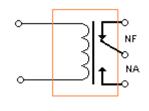

- Exemplo
 - Circuito de controle de sentido de giro de um motor DC com botões – circuito Ponte H


- Exemplo
 - Circuito de controle de sentido de giro de um motor DC com botões – circuito Ponte H


- Exemplo
 - Circuito de controle de sentido de giro de um motor DC com transistores NPN e PNP – circuito Ponte H

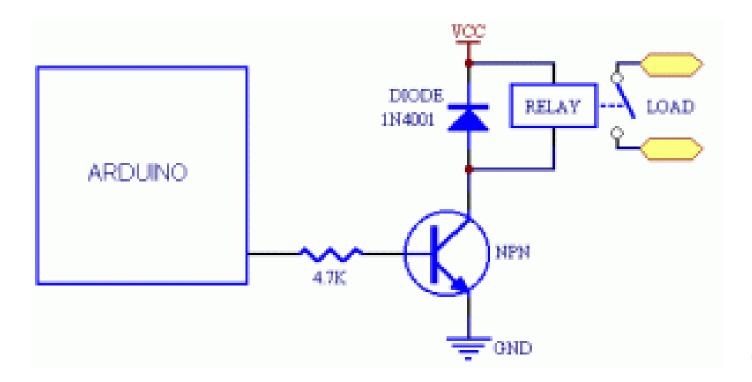
- Exemplo
 - Circuito de controle de sentido de giro de um motor DC com transistores NPN e PNP – circuito Ponte H

Criar um programa que controle o Motor na ponte H de transistores. Enviar os sinais corretos para controlar o motor parado, no sentido horário e anti-horário. MUITO CUIDADO PARA NÃO CRIAR CURTO.

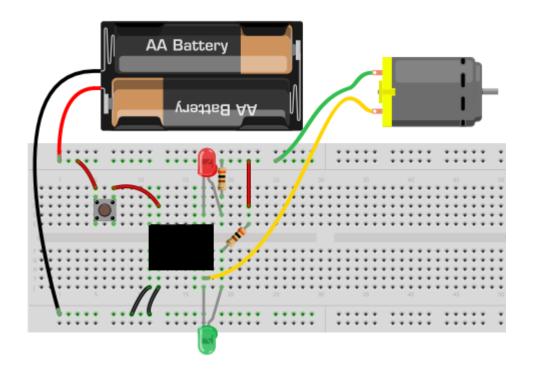

- Um relê é uma chave eletromecânica formada por uma bobina (eletroímã), mola de desarme, uma armadura, um conjunto de contatos e terminais.
- A passagem de corrente elétrica pela bobina gera uma campo magnético que aciona os contatos do relê.
- Os contatos dos relês podem ser do tipo normalmente aberto (NA) ou normalmente fechado (NF).

 O relê trabalha com uma pequena tensão e corrente na entrada para gerar tensão e corrente muito maior na saída.

 Outro tipo de relê é o de estado sólido que são mais rápidos que os relês eletromecânicos.



- Circuito de proteção
- Devido parte da energia que passa na bobina é armazenada, há o risco de ao desativar o contato essa energia volte e danifique o microcontrolador.
- Para isso é desenvolvido um circuito com transistor e diodo que previnem esse evento, protegendo o microcontrolador.



- Exemplo
 - Acionamento de um motor DC e um LED

Exercício

Criar um programa que controle através de relé uma lâmpada. Fazer o programa para controlar através de um botão, e outro para controlar com comando Serial.

